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U N C L A S S I F I E D 

General Overview 

 Monte Carlo simulations of an experimental subcritical benchmark were performed. 
— Helps validate recent improvements in computational tools. 
— Provides better predictability and understanding in the sensitivities and uncertainties 

associated with subcritical systems.  
 

 Experiments/simulations involved extensive mass and geometry perturbations. 
— 40+ different configurations. 
— Detailed model of the system /associated perturbation configurations. 
— MCNP5 with list-mode patch used for simulations.   

 

 3He neutron multiplicity detectors provided list-mode data in exp. & simulation. 
— Time stamp (and location) of every registered event. 

 

 Data analyzed using the Feynman Variance-to-Mean method to obtain MT. 
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Subcritical System: Thor Pu-metal core  

 Three individual  δ-phase plutonium components. 
— Net masses 3273.9 g (Upper), 4158.2 g (Center) and 2216.9 (Lower).  
— Half-inch diameter glory hole in center. 

 Assembled pieces approximate  a sphere ~10.6 cm in diameter. 
— Total net mass (with inserts) 9649.0 g. 

 
 
 
 
 
 
 
 
 
 
 

 Isotopic composition similar to Jezebel/BeRP. 
— 5.1% 240Pu (alloyed with ~1.01 wt% gallium). 
— All components clad with~ 13 cm (5 mils) of nickel.   
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Several major Thor Core experiment and evaluation 
publications are available in the literature.  
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Several major Thor Core experiment and evaluation 
publications are available in the literature.  
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PU-MET-FAST-008  

Benchmark Critical Experiment of a 
Thorium Reflected Pu Sphere 

PU-MET-FAST-044  

Pu Metal Sphere with Be, Graphite, Al, Fe and 
Mo Tampers and Polyethylene Reflectors 
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U N C L A S S I F I E D 

A geometry revaluation of the Thor core major 
components geometry was performed.   

 Updated dimensions determined from:  
— Original unpublished drawings from 1972. 
— Unpublished documents from 2005  when 

material was transferred from Los Alamos to 
the Nevada National Security Site.  
 
 
 

Slide 6 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

A geometry revaluation of the Thor core major 
components geometry was performed.   

 Updated dimensions determined from:  
— Original unpublished drawings from 1972. 
— Unpublished documents from 2005  when 

material was transferred from Los Alamos to 
the Nevada National Security Site.  
 
 
 

 Updated mass and density values also 
obtained for the Thor components from: 

— Mass measurements. 
— Stochastic volume ray-tracing estimation 

method with MCNP. 
— Analytical calculations. 
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U N C L A S S I F I E D 

Updated Thor mass and volume from a recent geometry 
re-evaluation. 
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Upper Spherical Cap (JX-4572)     
Volume Coated [cm3] Ni [cm3] Pu-alloy [cm3]   

present work: MCNP5 206.4 ± 0.1 2.67 ± 0.01 203.7 ± 0.12   
Mass Coated [g] Ni [g] Pu-alloy [g] Pu [g] 

present work: measurement / MCNP5  3273.9 ± 0.1 23.78 ± 0.1 3249.2 ± 0.14 3216 
unpublished work (2005) 3274.0 25.25 3249 3216.2 
unpublished work (1972)   3225 3192.4 
Robba et al. (1983)                                                                   3225 3193 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Updated Thor mass and volume from a recent geometry 
re-evaluation. 
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 Center Component (JX-4570)     

Volume Coated [cm3] Ni [cm3] Pu-alloy [cm3]   
present work: MCNP5 262.4 ± 0.13 3.58 ± 0.01 258.8 ± 0.13   

Mass Coated [g] Ni [g] Pu-alloy [g] Pu [g] 
present work: measurement / MCNP5  4158.2 ± 0.1 31.9 ± 0.1 4126.3 ± 0.14 4085  
unpublished work (2005) 4158.3 33.71 4124.6 4083 
unpublished work (1972)   4127 4085.3 
Robba et al. (1983)                                                                   4127 4086 

Upper Spherical Cap (JX-4572)     
Volume Coated [cm3] Ni [cm3] Pu-alloy [cm3]   

present work: MCNP5 206.4 ± 0.1 2.67 ± 0.01 203.7 ± 0.12   
Mass Coated [g] Ni [g] Pu-alloy [g] Pu [g] 

present work: measurement / MCNP5  3273.9 ± 0.1 23.78 ± 0.1 3249.2 ± 0.14 3216 
unpublished work (2005) 3274.0 25.25 3249 3216.2 
unpublished work (1972)   3225 3192.4 
Robba et al. (1983)                                                                   3225 3193 
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U N C L A S S I F I E D 

Updated Thor mass and volume from a recent geometry 
re-evaluation. 
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Lower Spherical Cap (JU-125)     
Volume Coated [cm3] Ni [cm3] Pu-alloy [cm3]   

present work: MCNP5 137.9 ± 0.1 2.22 ± 0.01 135.7 ± 0.1   
Mass Coated [g] Ni [g] Pu-alloy [g] Pu [g] 

present work: measurement / MCNP5  2216.9 ± 0.1 19.7 ± 0.1 2197.2 ± 0.14 2175 
unpublished work (2005) 2216.9 20.44 2196.5 2174.3 
unpublished work (1972) 2216.75 20.85 2195.9 2173.7 
Robba et al. (1983)                                                                  2196 2174 

 
 Center Component (JX-4570)     

Volume Coated [cm3] Ni [cm3] Pu-alloy [cm3]   
present work: MCNP5 262.4 ± 0.13 3.58 ± 0.01 258.8 ± 0.13   

Mass Coated [g] Ni [g] Pu-alloy [g] Pu [g] 
present work: measurement / MCNP5  4158.2 ± 0.1 31.9 ± 0.1 4126.3 ± 0.14 4085  
unpublished work (2005) 4158.3 33.71 4124.6 4083 
unpublished work (1972)   4127 4085.3 
Robba et al. (1983)                                                                   4127 4086 

Upper Spherical Cap (JX-4572)     
Volume Coated [cm3] Ni [cm3] Pu-alloy [cm3]   

present work: MCNP5 206.4 ± 0.1 2.67 ± 0.01 203.7 ± 0.12   
Mass Coated [g] Ni [g] Pu-alloy [g] Pu [g] 

present work: measurement / MCNP5  3273.9 ± 0.1 23.78 ± 0.1 3249.2 ± 0.14 3216 
unpublished work (2005) 3274.0 25.25 3249 3216.2 
unpublished work (1972)   3225 3192.4 
Robba et al. (1983)                                                                   3225 3193 
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U N C L A S S I F I E D 

An updated Thor density of 15.95 g/cm3 was obtained. 
 Calculated ρPu-alloy for Center/Upper components 

within statistical uncertainties.  
— Mass-averaged value of 15.95 g/cm3. 

 

 Discrepancy in Lower piece. 
— Likely attributed to dimension inaccuracies. 
— Component was stripped of its original Ni 

cladding leading to material loss.  
 

 

 

Slide 11 

Center Upper Lower Idealized Jezebel
15.80

15.85

15.90

15.95

16.00

16.05

16.10

16.15

16.20

16.25

 

 

 Thor Assembly
 Theory
 Other Assemblies

P
u-

al
lo

y 
D

en
si

ty
 [g

/c
m

3 ]

Adopted Value



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

An updated Thor density of 15.95 g/cm3 was obtained. 
 Calculated ρPu-alloy for Center/Upper components 

within statistical uncertainties.  
— Mass-averaged value of 15.95 g/cm3. 

 

 Discrepancy in Lower piece. 
— Likely attributed to dimension inaccuracies. 
— Component was stripped of its original Ni 

cladding leading to material loss.  
 

 Density of δ-phase plutonium metal decreases as 
a function of time due to void swelling from 
helium buildup [1]. 

— Average rate of density loss after 35 years 
~0.01 g/cm3 per year. 

— Can vary locally for a specific sample. 
— MISC [2] was used to decay initial Pu 

isotopes of the 40+ year old Thor core.  
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[1] R. Mulford et al. "Density Variation with Age   
in Delta Pu-Metal."  LA-UR-03-4108 (2003) 

[2] C. Solomon “MCNP Intrinsic Source Constructor (MISC):A User's Guide” 
LA-UR-12-20252 (2012) 
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Configuration of Thor Pu-metal core measurements. 

 14 main configurations were measured 
(various combinations of Thor core pieces). 

 40+ perturbation configurations: 
— Varying mass (different glory hole loadings). 
— Varying geometry (S-to-D distance). 
— Measurements with only 1 NPOD. 

 4 Detectors used: 
— 2 x  NPOD (LANL neutron multiplicity 

detector). 
— 1 x SNAP (LANL gross neutron counter). 
— 1 x HPGe (ORTEC gamma detector). 

•  
 List-mode data obtained from NPOD 

measurements and simulations with MCNP 
• Hage-Cifarelli formalism of the Feynman variance-

to-mean method was used in analysis. 
• Single value for efficiency (all bare configurations). 

— Measured using a neutron source: 0.0091 +/- 0.0005 
— Validated using a combination of the SNAP/NPOD 

count rates for each configuration. 
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Table of the different configuration perturbations. 
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U N C L A S S I F I E D 

Total Neutron Multiplication (Inferred) vs  System Mass 
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Calculation/Experiment for Total Multiplication 
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 Calculation ~4% 
higher. 

 Consistent with past 
experiences.  
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U N C L A S S I F I E D 

Detectable mass threshold decreases as mass (and 
system multiplication) increases. 
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 Varying the Source-to-Detector distance. 
• Efficiency of stationary NPOD increases as varying NPOD moves closer. 

 Shifted NPOD (5 cm): 
• Simulation: 27% ↑ in R1, 75% ↑ in R2 
• Experiment: 25% ↑ in R1, 41% ↑ in R2 

 Stationary NPOD: 
• Simulation: 0.85% ↑ in R1, 2.5% ↑ in R2 
• Experiment: 0.94% ↑ in R1, 2.5% ↑ in R2 

 Removing NPOD 
— Presence of an NPOD adds reflection that another NPOD can see. 

• Simulation:  4.4% ↑ in multiplication 
• Experiment: 3.9% ↑ in multiplication  

 
 

 

 

 

 

 

 
 

Varying NPOD position provides an observable effect 
on the inferred neuron multiplication. 
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Deducing the possible sources of uncertainty/bias in 
the simulation results.  

Slide 19 

 Nuclear data 
— Ongoing assessment of underlying nuclear data effects for this application. 
— Pu: nubar, total, scattering fission, and capture neutron cross section [2-4]. 

 Thor system specifications 
— Geometry re-evaluation performed.  
— Isotopic composition 

 Modeled NPOD efficiency  
— Overestimate of gas pressure or active length could lead to higher inferred values*.  
— Improved efficiency measurements underway (for BeRP experiment with identical setup). 

 Radiation transport code 
— Computational transport codes will always have some limitations.  
— MCNP6 expected to provide improved physics relative to this application.  
 

 
[2] T. Kooyman  et al., “Comparative sensitivity study of some criticality safety benchmark experiments using JEFF3.1.2, JEFF3.2T and 
ENDF/B-VII.1” NEMEA-7/CIELO International Collaboration on Nuclear Data (2013) 

 Preliminary simulations with 239Pu JEFF 3.1.2 cross sections 
provided multiplication results slightly closer to experimental 
values as compared to ENDF/B-VII.0. 

 This is consistent with fast Pu benchmark integral data which shows 
eigenvalue [(keff) calculations 2].  

[3] S. Boldin, C. Solomon “Simulations of Multiplicity Distributions with Perturbations to Nuclear Data” Trans. ANS., Washington DC 
(2013)  
[4] M. Chadwick et al. “The CIELO Collaboration Neutron Reactions on 1H, 16O, 56Fe, 235,238U and 239Pu” Trans. ANS., Washington 
DC (2013)  

[1] K. Clark et al., “Characterization of the NPOD3 Detectors in MCNP5 and MCNP6” LA-UR-14-20342 (2014) 
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Comparing experiments and simulations helps in 
assessing/reducing uncertainties in models and data.  

 Ongoing effort to accurately quantify uncertainty in neutron 
multiplication inference from measurements and calculations. 

 

 Significant improvements will depend on: 
— These types of measurements and their simulations.  
— Incremental improvements in computational tools. 
— Leveraging community-wide parallel efforts related to quantifying uncertainties 

and correlations for nuclear data. 
— Applying new analyses techniques.  

• e.g. Bayesian interpretation of historical benchmark data. 
 

Slide 20 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Related technical sessions organized by LANL scientists 
at upcoming American Nuclear Society (ANS) meetings.  
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Critical and Subcritical Experiments 

Session Organizer: Jesson Hutchinson (LANL) 

Session Chair: Richard Malenfant (LANL – retired) 

Nuclear Data for Nonproliferation 
Applications 

Session Organizer: Rian Bahran (LANL) 
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Thank you for your attention. 
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